Abstract
FE-simulation and optimization are widely used in the stamping process to improve design quality and shorten development cycle. However, the current simulation and optimization may lead to non-robust results due to not considering the variation of material and process parameters. In this study, a novel stochastic analysis and robust optimization approach is proposed to improve the stamping robustness, where the uncertainties are involved to reflect manufacturing reality. A meta-model based stochastic analysis method is developed, where FE-simulation, uniform design and response surface methodology (RSM) are used to construct meta-model, based on which Monte-Carlo simulation is performed to predict the influence of input parameters variation on the final product quality. By applying the stochastic analysis, uniform design and RSM, the mean and the standard deviation (SD) of product quality are calculated as functions of the controllable process parameters. The robust optimization model composed of mean and SD is constructed and solved, the result of which is compared with the deterministic one to show its advantages. It is demonstrated that the product quality variations are reduced significantly, and quality targets (reject rate) are achieved under the robust optimal solution. The developed approach offers rapid and reliable results for engineers to deal with potential stamping problems during the early phase of product and tooling design, saving more time and resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.