Abstract

We present two efficient discrete parameter simulation optimization (DPSO) algorithms for the long-run average cost objective. One of these algorithms uses the smoothed functional approximation (SFA) procedure, while the other is based on simultaneous perturbation stochastic approximation (SPSA). The use of SFA for DPSO had not been proposed previously in the literature. Further, both algorithms adopt an interesting technique of random projections that we present here for the first time. We give a proof of convergence of our algorithms. Next, we present detailed numerical experiments on a problem of admission control with dependent service times. We consider two different settings involving parameter sets that have moderate and large sizes, respectively. On the first setting, we also show performance comparisons with the well-studied optimal computing budget allocation (OCBA) algorithm and also the equal allocation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.