Abstract
BACKGROUND: The stochastic nature of acid-base quenching in chemically amplified photoresists leads to variations in the resulting acid concentration during post-exposure bake, which leads to line-edge roughness (LER) of the resulting features. METHODS: Using a stochastic resist simulator, we predicted the mean and standard deviation of the acid concentration after post-exposure bake for an open-frame exposure and fit the results to empirical expressions. RESULTS: The mean acid concentration after quenching can be predicted using the reaction-limited rate equation and an effective rate constant. The effective quenching rate constant is predicted by an empirical expression. A second empirical expression for the standard deviation of the acid concentration matched the output of the PROLITH stochastic resist model to within a few percent CONCLUSIONS: Predicting the stochastic uncertainty in acid concentration during post-exposure bake for 193-nm and extreme ultraviolet resists allows optimization of resist processing and formulations, and may form the basis of a comprehensive LER model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.