Abstract
Chondritic meteorites are thought to be representative of the material that formed the Earth. However, the Earth is depleted in volatile elements in a manner unlike that in any chondrite, and yet these elements retain chondritic isotope ratios. Here we use N-body simulations to show that the Earth did not form from chondrites, but rather by stochastic accretion of many precursor bodies whose variable compositions reflect the temperatures at which they formed. Earth’s composition is reproduced when initial temperatures of planetesimal- to embryo-sized bodies are set by disk accretion rates of (1.08±0.17)×10-7 solar masses/yr, although they may be perturbed by 26Al heating on bodies formed at different times. Our model implies that a heliocentric gradient in composition was present in the protoplanetary disc and that planetesimals formed rapidly within ~1 Myr, in accord with radiometric volatile depletion ages of the Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.