Abstract

The spectral shape of the prompt emissions of gamma-ray bursts (GRBs) is typically expressed by the Band function: smooth joining of two power-law functions for high-energy and low-energy regions. To reveal the origin of the Band function, we revisit the stochastic acceleration model, in which electrons are accelerated via scattering with turbulent waves in the GRB outflow. The balance between the acceleration and synchrotron cooling yields a narrow energy-distribution similar to the Maxwellian distribution. The synchrotron spectrum becomes consistent with the observed hard photon index for the low-energy region. On the other hand, the narrow electron energy distribution contradicts the power-law spectrum for the high-energy region. We consider an evolution of the electron energy distribution to solve this problem. The turbulence and magnetic field induced by a certain hydrodynamical instability gradually decay. According to this evolution, the typical synchrotron photon energy also decreases with time. The time-integrated spectrum forms the power-law shape for the high-energy region. We discuss the required evolutions of the turbulence and magnetic field to produce a typical Band function. Although the decay of the turbulence is highly uncertain, recent numerical simulations for decaying turbulence seem comparatively positive for the stochastic acceleration model. Another condition required to reconcile observations is a much shorter duration of the stochastic acceleration than the dynamical timescale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.