Abstract

BackgroundTumor necrosis factor (TNF)-α inhibitors represented by Etanercept (a fusion protein containing soluble TNF receptor II (sTNFRII) and the Fc segment of human IgG1) play a pivotal role in Rheumatoid arthritis (RA) treatment. However, long-term use increases the risk of infection and tumors for their systemic inhibition of TNF-α, which disrupts the regular physiological function of this molecular. Mesenchymal stem cells (MSCs)-based delivery system provides new options for RA treatment with their “homing” and immune-regulation capacities, whereas inflammatory environment (especially TNF-α) is not conducive to MSCs' therapeutic effects by inducing apoptosis/autophagy. Here, we constructed a strain of sTNFRII-Fc-expressing MSCs (sTNFRII-MSC), aiming to offset the deficiency of those two interventions.MethodsConstructed sTNFRII-Fc lentiviral vector was used to infect human umbilical cord-derived MSCs, and sTNFRII-MSC stable cell line was generated by monoclonal cultivation. In vitro and vivo characteristics of sTNFRII-MSC were assessed by coculture assay and an acute inflammatory model in NOD/SCID mice. The sTNFRII-MSC were transplanted into CIA model, pathological and immunological indicators were detected to evaluate the therapeutic effects of sTNFRII-MSC. The distribution of sTNFRII-MSC was determined by immunofluorescence assay. Apoptosis and autophagy were analyzed by flow cytometry, western blot and immunofluorescence.ResultssTNFRII-Fc secreted by sTNFRII-MSC present biological activity both in vitro and vivo. sTNFRII-MSC transplantation effectively alleviates mice collagen-induced arthritis (CIA) via migrating to affected area, protecting articular cartilage destruction, modulating immune balance and sTNFRII-MSC showed prolonged internal retention via resisting apoptosis/autophagy induced by TNF-α.ConclusionsTNFRII-Fc modification protects MSCs against apoptosis/autophagy induced by TNF-α, in addition to releasing sTNFRII-Fc neutralizing TNF-α to block relevant immune-inflammation cascade, and thus exert better therapeutic effects in alleviating inflammatory arthritis.

Highlights

  • Tumor necrosis factor (TNF)-α inhibitors represented by Etanercept (a fusion protein containing soluble TNF receptor II and the Fc segment of human immunoglobulin G1 (IgG1)) play a pivotal role in Rheumatoid arthritis (RA) treatment

  • As for the mechanism underlying the better therapeutic effects granted by soluble tumor necrosis factor receptor (TNFR) II (sTNFRII)-Mesenchymal stem cells (MSCs), we focus on the apoptosis and autophagy of implanted MSCs induced by TNF-α. sTNFRII-MSC maintained longer in collagen-induced arthritis (CIA) mice than naïve MSCs which was related to the protective effect of sTNFRII-Fc modification against apoptosis and autophagy induced by TNF-α on MSCs

  • The expression cassette of sTNFRII-Fc was cloned into the lentiviral vector GV358 containing enhanced green fluorescent protein (EGFP) and puromycin resistance gene (Fig. 1a), and gel electrophoresis revealed that a characteristic band was shown at 1.54 kb (Additional fi1e 1: Fig. 1D) which consistent with our predictions

Read more

Summary

Introduction

Tumor necrosis factor (TNF)-α inhibitors represented by Etanercept (a fusion protein containing soluble TNF receptor II (sTNFRII) and the Fc segment of human IgG1) play a pivotal role in Rheumatoid arthritis (RA) treatment. TNF-α is originally produced as a trimeric type II transmembrane protein, which can be cleaved to a soluble form by the metalloproteinase TNF-converting enzyme, and primarily secreted by lymphocytes, monocytes and macrophages [4, 5] This extracellular TNF-α binds to its two receptors, tumor necrosis factor receptor (TNFR) I (expressed on almost all mammalian cell type) and TNFR II (restricted to immune cells and endothelial cells) on the cell membrane, and eventually activates the transcription factor nuclear factor-κB to mediate different physiological processes [6]. The current therapeutic paradigm of global TNF-α blockade has several limitations, including adverse effects (serious infection), low rates of disease remission and generation of anti-drug antibodies [11, 12] These limitations were due to systemic delivery of those TNF-α inhibitors, which required higher dosage to treat affected arthritic joints in addition to generating immunogenicity and affecting the inherent physiological function of TNF-α within the hematopoietic lineage [13, 14]. There is an urgent need for a safe, effective and accessible carrier to deliver drugs to the affected areas, and reduce the occurrence of adverse reactions

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.