Abstract

We present STNet, an end-to-end generative framework that synthesizes spatiotemporal super-resolution volumes with high fidelity for time-varying data. STNet includes two modules: a generator and a spatiotemporal discriminator. The input to the generator is two low-resolution volumes at both ends, and the output is the intermediate and the two-ending spatiotemporal super-resolution volumes. The spatiotemporal discriminator, leveraging convolutional long short-term memory, accepts a spatiotemporal super-resolution sequence as input and predicts a conditional score for each volume based on its spatial (the volume itself) and temporal (the previous volumes) information. We propose an unsupervised pre-training stage using cycle loss to improve the generalization of STNet. Once trained, STNet can generate spatiotemporal super-resolution volumes from low-resolution ones, offering scientists an option to save data storage (i.e., sparsely sampling the simulation output in both spatial and temporal dimensions). We compare STNet with the baseline bicubic+linear interpolation, two deep learning solutions ( SSR+TSF, STD), and a state-of-the-art tensor compression solution (TTHRESH) to show the effectiveness of STNet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.