Abstract

ABSTRACT Background This study investigates the biological functions of Stathmin1 (STMN1) involving drug resistance and cell proliferation in multiple myeloma (MM) and its related mechanisms. Methods Bone marrow aspirates were collected from 20 MM patients, and the bone marrow mononuclear cells (BMMCs) were separated by Ficoll-Hypaque density gradient centrifugation. Blood samples of 20 patients with monoclonal gammopathy of undetermined significance (MGUS) and 20 healthy donors were collected. Normal plasma cells sorted from the peripheral blood of MGUS patients and healthy subject as controls. Two bortezomib (BTZ)-resistant MM cell lines were established, namely NCI-H929/BTZ and KM3/BTZ cells, and then transfected with lentiviruses packaging sh-STMN1 to knock down STMN1 level in BTZ-resistant cells. Expression of STMN1 was assessed by RT-qPCR and western blotting. CCK-8 assays were performed to assess 50% growth inhibition (IC50) values. Green fluorescent protein in BTZ-resistant cells infected with lentiviruses was observed by fluorescence microscopy. Cell viability, proliferation, cell cycle, and apoptosis were evaluated through MTT assays, colony formation assays, flow cytometry analyses, and TUNEL staining. Results STMN1 was upregulated in MM cells and bone marrow aspirates of MM patients. Additionally, STMN1 depletion attenuated BTZ resistance in MM cells. Moreover, downregulation of STMN1 limited the malignant phenotypes of BTZ-resistant cells. Mechanistically, the PI3K/Akt signaling was inactivated by STMN1 downregulation in BTZ-resistant cells. Conclusion STMN1 silencing inhibits cell proliferation and BTZ resistance in MM by inactivating the PI3K/Akt signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call