Abstract
ABSTRACTWe have assembled a scanning tunneling microscope with an inverted sample that allows the sample surface to be contacted by fluid electrolytes in a controlled atmosphere. A hanging meniscus is formed between the sample and a small cup surrounding the tunneling tip. In-situ imaging of the electrode/electrolyte interface is conveniently achieved with clean samples under potentiostatic control. The functioning of the microscope is illustrated by the imaging of the electrodeposition of copper on gold. This microscope has been used to image hydrogen-terminated silicon surfaces and to demonstrate that islands, tentatively assigned as silicon oxide, are formed on rinsing in water but can be avoided if the surface is not rinsed on withdrawal from the ammonium fluoride etching solution. Finally, STM shows that the convenient, gas-phase photochlorination of H-Si(111) produces the simple Cl-Si(111)(1×1) structure with little or no etching of the silicon surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.