Abstract

Assuming that an electron confined by double δ-function barriers is in a quasi-stationary state, we derived eigenfunctions and eigenenergies of the electron. Applying this point of view to the electron confined in a rectangular quantum corral (QC), we obtained scanning tunneling microscopic (STM) images and scanning tunneling spectrum (STS). Our results are consistent with experimental ones, which confirms validity of the present model. Comparing with the treatment in which the corral potential is chosen to be of square-barrier type, the present treatment has an advantage that the eigenvalue equations are simple and the number of parameters that specify the potential barrier is only one except the bottom of the potential well. On the basis of a Dyson equation for the Green function we calculated STM images and STS of the QC having an adsorbed atom inside. Our results are consistent with experimental STM images and STS. In contrast to a previous viewpoint that the STS profile is reversed with that of the empty QC, we concluded the STS peaks of the adsorbed QC are shifted downward from those of the empty QC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.