Abstract

Video-language pre-training models have recently achieved remarkable results on various multi-modal downstream tasks. However, most of these models rely on contrastive learning or masking modeling to align global features across modalities, neglecting the local associations between video frames and text tokens. This limits the model’s ability to perform fine-grained matching and generalization, especially for tasks that selecting segments in long videos based on query texts. To address this issue, we propose a novel stitching and matching pre-text task for video-language pre-training that encourages fine-grained interactions between modalities. Our task involves stitching video frames or sentences into longer sequences and predicting the positions of cross-model queries in the stitched sequences. The individual frame and sentence representations are thus aligned via the stitching and matching strategy, encouraging the fine-grained interactions between videos and texts. in the stitched sequences for the cross-modal query. We conduct extensive experiments on various benchmarks covering text-to-video retrieval, video question answering, video captioning, and moment retrieval. Our results demonstrate that the proposed method significantly improves the generalization capacity of the video-text pre-training models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.