Abstract

Two-dimensional (2D) coordination polymer [Zn(ATZ)2]n (HATZ = 5-amino-1H-tetrazole) featuring a 2D + 2D → 2D pillar-layer array was synthesized, wherein two honeycomb-shaped Zn(ATZ)1.5 sublayers can be stitched together by dicarboxylate bridging linkers of varied length and type to generate 4 three-dimensional (3D) isoreticular noninterperpentrated frameworks under solvothermal conditions. The interpenetration behavior may be constrained to some extent by the pillar length because a 3D twofold interpenetrated architecture was obtained with a longer ligand using a similar process. The pillar-exchange process enabled the facile synthesis of a family of isoreticular metal–organic framework structures with different flexibilities and interpenetration behaviors through the judicious choice of the type and size of the pillar units. Thermal analysis indicated that [Zn(ATZ)2]n also possesses excellent thermostability at a high decomposition temperature up to 356 °C. The kinetic parameters of its exothermic proces...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.