Abstract

We present novel asymptotically global AdS4 solutions, constructed by turning on a dipolar differential rotation at the conformal boundary. At fixed energy and boundary profile, we find two different geometries: a horizonless spacetime, and a deformed, hourglass shaped black hole with zero net angular momentum. Both solutions exist up to some maximum amplitudes of the boundary profile, and develop an ergoregion attached to the boundary before the maximum amplitude is reached. We show that both spacetimes develop hair as soon as the ergoregion develops. Furthermore, we discuss the full phase diagram, including the possibility of phases with disconnected horizons, by considering the Mathisson-Papapetrou equations for a spinning test particle. Finally, we provide a first principle derivation of the superradiant bound purely from CFT data, and outline possible scenarios for the late time evolution of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.