Abstract
Lignin polymer is biologically and chemically stable and requires highly vigorous conditions for de-polymerization, and subsequent stabilization of the monomeric conversion products to prevent re-polymerization and char production. The Lignin-to-Liquid (LtL) process is a solvolytic conversion of lignin with formic acid. Formic acid has been shown to both catalyze the de-polymerization and supply hydrogen that stabilizes the de-polymerization products. In this paper, lignin from Eucalyptus wood was used as the feedstock, and the LtL-process was performed in both aqueous and ethanolic solvent systems. The experimental variables were different levels of loading in the reactor, stirred and non-stirred conditions, and different reaction temperatures. The bio-oil consisted mostly of phenolic compounds, and the bio-oil yields differed with type of the solvent used, level of loading in the reactor, stirring condition, and operating temperature. More than 55 wt.% of the lignin was recovered as bio-oil at 320 °C at stirred conditions when the reactor was loaded at high level. Overall, the ethanolic solvent together with maximum level of loading in the reactor under stirred condition resulted in the highest bio-oil yield. Elemental balance data for bio-oil and char yields and the molecular composition of the bio-oils were also investigated using, respectively, elemental analysis and GC-MS. Finally, principal component analysis was used as well to systematically explore the relationship between the bio-oil and char yields and the reaction conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.