Abstract

Abstract In this paper we present a factorization framework for Hermite subdivision schemes refining function values and first derivatives, which satisfy a spectral condition of high order. In particular we show that spectral order $d$ allows for $d$ factorizations of the subdivision operator with respect to the Gregory operators: a new sequence of operators we define using Stirling numbers and Gregory coefficients. We further prove that the $d$th factorization provides a ‘convergence from contractivity’ method for showing $C^d$-convergence of the associated Hermite subdivision scheme. Gregory operators are derived by explicitly solving a recursion based on the Taylor operator and iterated vector scheme factorizations. The explicit expression of these operators allows one to compute the $d$th factorization directly from the mask of the Hermite scheme. In particular, it is not necessary to compute intermediate factorizations, which simplifies the procedures used up to now.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.