Abstract
Expansin proteins extend plant cell walls by a hydrolysis-free process that disrupts hydrogen bonding between cell wall polysaccharides. However, it is unknown if this mechanism is operative in mushrooms. Herein we report that the native wall extension activity was located exclusively in the 10 mm apical region of 30 mm Flammulina velutipes stipes. The elongation growth was restricted also to the 9 mm apical region of the stipes where the elongation growth of the 1st millimetre was 40-fold greater than that of the 5th millimetre. Therefore, the wall extension activity represents elongation growth of the stipe. The low concentration of expansin-like protein in F. velutipes stipes prevented its isolation. However, we purified an expansin-like protein from snail stomach juice which reconstituted heat-inactivated stipe wall extension without hydrolytic activity. So the previous hypotheses that stipe wall extension was resulted from hydrolysis of wall polymers by enzymes or disruption of hydrogen bonding of wall polymers exclusively by turgor pressure are challenged. We suggest that stipe wall extension may be mediated by endogenous expansin-like proteins that facilitate cell wall polymer slippage by disrupting noncovalent bonding between glucan chains or chitin chains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.