Abstract

Aseptic inflammation is the main factor causing aseptic loosening of artificial joints. Studies have shown that inflammatory cells can activate STING (stimulator of interferon genes, STING) after being stressed. This study aims to explore the specific mechanism of STING in aseptic loosening of artificial joints, and provide new strategies for disease prevention.Titanium particles with a diameter of 1.2-10 μm were prepared to stimulate macrophages (RAW 264.7) to simulate the periprosthetic microenvironment. A lentiviral vector targeting the STING gene was designed and transfected into macrophages to construct a cell line targeting STING knockdown. The expression and secretion levels of TNF-α were detected by qPCR and ELISA, the activation levels of inflammatory pathways (NF-κB, IRF3, etc.) were detected by western blot, and the nucleus translocation of P65 and IRF3 was observed by cellular immunofluorescence.After titanium particles stimulated macrophages, qPCR and ELISA showed that the transcription and secretion levels of TNF-α were significantly increased. Western blot showed that titanium particle stimulation could increase the phosphorylation levels of NF-κB and IRF3 pathways. While knockdown of STING can significantly reduce titanium particle-induced TNF production, attenuate the activation levels of NF-κB and IRF3 pathways as well as the nucleus translocation of P65 and IRF3.Conclusions: STING positively regulates the level of inflammation in macrophages induced by titanium particles, and targeted inhibition of STING can reduce inflammation, which may delay the progression of aseptic loosening of artificial joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call