Abstract
AbstractThe existence of sting jets as a potential source of damaging surface winds during the passage of extratropical cyclones has recently been recognized. However, there are still very few published studies on the subject. Furthermore, although it is known that other models are capable of reproducing sting jets, in the published literature only one numerical model [the Met Office Unified Model (MetUM)] has been used to numerically analyze these phenomena. This article aims to improve our understanding of the processes that contribute to the development of sting jets and show that model differences affect the evolution of modeled sting jets. A sting jet event during the passage of a cyclone over the United Kingdom on 26 February 2002 has been simulated using two mesoscale models, namely the MetUM and the Consortium for Small Scale Modeling (COSMO) model, to compare their performance. Given the known critical importance of vertical resolution in the simulation of sting jets, the vertical resolution of both models has been enhanced with respect to their operational versions. Both simulations have been verified against surface measurements of maximum gusts, satellite imagery, and Met Office operational synoptic analyses, as well as operational analyses from the ECMWF. It is shown that both models are capable of reproducing sting jets with similar, though not identical, features. Through the comparison of the results from these two models, the relevance of physical mechanisms, such as evaporative cooling and the release of conditional symmetric instability, in the generation and evolution of sting jets is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.