Abstract

The stimulator of interferon genes (STING), one of the critical factors of innate immunity, is indicated to be closely related to angiogenesis. This study examined STING's role in angiogenesis and the formation of type H vessels, a specific subtype of bone vessels that regulates bone healing. Different concentrations of 2',3'-cGAMP, and H-151 or C-176 were applied to activate or inhibit STING, respectively. Human umbilical vein endothelial cells were used to examine the effect of STING on angiogenesis in vitro; cell viability, cell migration, and quantitative real-time polymerase chain reactions were performed. Also, the metatarsal experiment was applied as ex vivo proof. Bone fracture or defect mice models were used to examine the effect of STING in vivo; the bone healing process was evaluated by radiography weekly and by μCT on the 14th day after surgery. The formation of type H vessels (CD31hi Emcnhi endothelial cells) and osteogenesis (OCN-positive cells) was assessed using the cryosection and paraffin section. STING activation inhibited angiogenesis both in vitro and ex vivo and slowed down the bone healing process in vivo. Histological analysis showed an increased callus formation, fewer type H vessels, and almost no callus mineralization in the STING activation group compared to the control group. By contrast, H-151 (a hsSTING inhibitor) promoted angiogenesis at a low dose. Moreover, inhibition of mmSTING by C-176 enhanced type H vessels' formation, implying osteogenesis promotion in bone healing (higher bone volume density and more OCN-positive cells). Our data suggested that STING inhibition accelerates the bone healing process while enhancing type H vessel formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.