Abstract
Oncolytic viruses (OVs) can selectively replicate in tumor cells and remodel the microenvironment of immunologically cold tumors, making them a promising strategy to evoke antitumor immunity. Similarly, agonists of the stimulator of interferon genes (STING)-interferon (IFN) pathway, the main cellular antiviral system, provide antitumor benefits by inducing the activation of dendritic cells (DC). Considering how the activation of the STING-IFN pathway could potentially inhibit OV replication, the use of STING agonists alongside OV therapy remains largely unexplored. Here, we explored the antitumor efficacy of combining an HSV-1-based OV, C-REV, with a membrane-impermeable STING agonist, 2'3'-GAMP. Our results demonstrated that tumor cells harbor a largely defective STING-IFN pathway, thereby preventing significant antiviral IFN induction regardless of the permeability of the STING agonist. In vivo, the combination therapy induced more proliferative KLRG1-high PD1-low CD8+ T-cells and activated CD103+ DC in the tumor site and increased tumor-specific CD44+ CD8+ T-cells in the lymph node. Overall, the combination therapy of C-REV with 2'3'-cGAMP elicited antitumor immune memory responses and significantly enhanced systemic antitumor immunity in both treated and non-treated distal tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.