Abstract

The timing of the early metabolic, ionic, and secretory responses to glucose in rat pancreatic islets was monitored by measuring, at 12 sec intervals, the concentrations of glucose, lactic, and pyruvic acids, 32P, 86Rb, 45Ca, and insulin in the effluent of perifused prelabeled islets. The increase in glucose concentration from zero to 16.7 m M was complete within 133 sec. The output of organic acids increased after 24 sec of exposure to glucose and, in the case of lactic acid, fell slightly after the initial elevation. The phosphate flush was initiated only after 96 sec of exposure to glucose, whereas the decreases in 86Rb and 45Ca outflow were both detectable within 72 sec of stimulation. The secondary rise in 45Ca efflux was first seen after 157 sec of stimulation and its time course was not vastly different from that of insulin release. These data indicate that, in the secretory sequence, metabolic changes precede both the remodelling of ionic fluxes and the stimulation of insulin release. The results are compatible with the view that the secondary rise in 45Ca outflow is attributable, in part at least, to the glucose-induced decrease in K conductance (but not to the increase in phosphate outflow), with resulting membrane depolarization and gating of voltage-dependent Ca channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call