Abstract

In general, aggregation-prone organic molecules are prevented from self-aggregation in the presence of macrocyclic hosts like β-cyclodextrin because of their preference for the formation of inclusion complex with guest molecules. On the contrary, sulfate-laced β-cyclodextrin has been recently reported to induce the aggregation of some of the non-aggregation-prone organic dyes, which have been subsequently utilized for biosensing applications. In the present contribution, we report the interaction of a cationic organic probe molecule, 1-pyrene methyl amine (PMA), which belongs to one of the most useful families of organic fluorescent probes, that is, pyrene, with a sulfated β-cyclodextrin derivative (SCD). Interaction of a cationic probe with a β-cyclodextrin derivative was studied using a variety of photophysical methods such as ground-state absorption, steady-state emission, and time-resolved emission techniques. Detailed photophysical investigations have revealed that SCD induces the ground-state association of PMA molecules. This SCD-induced aggregation of PMA molecules has been attributed to the charge neutralization of the cationic probe by negatively charged sulfate groups, which subsequently lead to their association because of the close proximity on the rims of cyclodextrin. This monomer-dimer equilibrium of the PMA-SCD system is found to be extremely responsive to external chemical stimuli like temperature, pH, ionic strength of the medium, and organic solvent (dimethyl sulfoxide), which projects them as potential platforms for various sensing applications including bioanalytes. The supramolecular assembly has been demonstrated to sense arginine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call