Abstract

The task-switching paradigm provides a powerful tool to measure the development of core cognitive control processes. In this study, we use the alternating runs task-switching paradigm to assess preparatory control processes involved in flexibly preparing for a predictable change in task and stimulus-driven control processes involved in controlling stimulus-level interference. We present three experiments that examine behavioral and event-related potential (ERP) measures of task-switching performance in middle childhood and young adulthood under low and high stimulus interference conditions. Experiment 1 confirms that our new child-friendly tasks produce similar behavioral and electrophysiological findings in young adults as those previously reported. Experiment 2 examines task switching with univalent stimuli across a range of preparation intervals in middle childhood. Experiment 3 compares task switching with bivalent stimuli across the same preparation intervals in children and young adults. Children produced a larger RT switch cost than adults with univalent stimuli and a short preparation interval. Both children and adults showed significant reduction in switch cost with increasing preparation interval, but in children this was caused by greater increase in RT for repeat than switch trials. Response-locked ERPs showed intact preparation for univalent, but less efficient preparation for bivalent stimulus conditions. Stimulus-locked ERPs confirmed that children showed greater stimulus-level interference for repeat trials, especially with bivalent stimuli. We conclude that children show greater stimulus-level interference especially for repeat trials under high interference conditions, suggesting weaker mental representation of the current task set.

Highlights

  • Cognitive control involves a range of psychological processes that regulate conscious thought and behavior, including working memory, inhibition, and cognitive flexibility (Miyake et al, 2000; Diamond, 2013)

  • We examine both response-locked and stimulus-locked event-related potential (ERP) to dissociate the contribution of preparatory and target-driven control processes on task-switching performance in middle childhood

  • Reaction time (RT) switch cost reduced with increasing RSI [F(3, 45) = 9.9, p < 0.001] and, as with adults, this effect was largest as RSI increased from 300 to 600 ms [F(1, 15) = 12, p = 0.004]

Read more

Summary

Introduction

Cognitive control involves a range of psychological processes that regulate conscious thought and behavior, including working memory, inhibition, and cognitive flexibility (Miyake et al, 2000; Diamond, 2013) These higher order cognitive functions and the frontal brain areas that support them show protracted development, reaching full maturation as late as the third decade of life (e.g., Lebel et al, 2008). Even with very long preparation intervals (i.e., response-stimulus interval (RSI) in alternating runs paradigms and cue-stimulus interval (CSI) in cued trials paradigms), a residual switch cost remains, suggesting that advance preparation is not sufficient to fully equate switch and repeat trials (Allport et al, 1994; Rogers and Monsell, 1995). This residual switch cost has been attributed to incomplete advance preparation before the onset of the stimulus under some task conditions (Verbruggen et al, 2007), sustained interference from the previously active task set (e.g., Mayr and Keele, 2000), difficulty re-activating a currently irrelevant task set (e.g., Allport et al, 1994; Mayr and Keele, 2000) and/or intermittent failure to engage the correct task set (De Jong, 2000)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.