Abstract

To fabricate thermo- and pH-sensitive hydrogels functionalized with β-cyclodextrin (β-CD) moieties, β-CD polymer bearing methacrylate (CDP-g-GMA) used as a reactive and functional crosslinker was synthesized, and then copolymerized with N-isopropylacrylamide (NIPAAm) and acrylic acid (AA) in aqueous solution via UV-initiated free radical polymerization. The stimulus-responsiveness of the resultant hydrogels has been carried out by measuring the swelling ratio at different temperatures and pH values. The results showed that the thermo- and pH-sensitivities of the produced hydrogels were significantly dependent on the compositions of the hydrogels, and the dual sensitivities exhibited good reversible process. The interior morphology observed by SEM exhibited that the pore size of the hydrogels could be tailored by pH of the local medium. Using a water-soluble cationic dye methyl violet (MV) as a model drug, MV loading and release profiles of the hydrogels as potential drug controlled release carriers were evaluated. The MV release rate from CD-functionalized hydrogels was much slower than that from the hydrogel without β-CDs at both pH 2.0 and pH 7.4. The release of MV from CD-functionalized hydrogels at pH 2.0 was faster than that at pH 7.4, the release kinetics of MV from the CD-functionalized hydrogels displayed a sustained release profile, and the release mechanism followed Fickian diffusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call