Abstract
Since recent studies show that pial artery dilation during a 20 or 40 min hypoxic exposure was less than that observed during a 5 or 10 min exposure, stimulus duration determines the nature of the vascular response to hypoxia. Decremented hypoxic pial dilation during longer exposure periods results, at least in part, from decreased release of methionine enkephalin (Met), an opioid known to contribute to dilation during hypoxia. Nitric oxide and cGMP contribute to both release and the vascular response to this opioid. The present study was designed to determine if the stimulus duration modulates the interaction between opioids and NO in hypoxic pial dilation using newborn pigs equipped with a closed cranial window. Elevation of CSF cGMP during hypoxia (Po 2≈35 mmHg) was dependent on stimulus duration (435±31, 934±46, 747±25, and 623±17 fmol/ml cGMP during normoxia and after 10, 20, and 40 min of hypoxia). Met-induced pial dilation during hypoxia was also stimulus duration dependent (7±1, 10±1, and 15±1, vs. 4±1, 6±1, and 8±2 vs. 2±1, 3±1, and 5±1% for 10 −10, 10 −8, 10 −6 M Met during normoxia, and after 20, and 40 min of hypoxia). Additionally, the release of cGMP by Met during hypoxia was also stimulus duration dependent (1.8±0.1 vs. 1.6±0.1 vs. 1.3±0.1 fold change in CSF cGMP for 10 −8 M Met during normoxia and after 20 and 40 min of hypoxia). These data indicate that the diminished role of Met in pial dilation during longer hypoxic exposure periods results from a diminished capacity of this opioid to elicit dilation. Such impaired dilation is correlated with diminished stimulated cGMP release. These data also suggest that diminished CSF cGMP release during prolonged hypoxia contributes to decreased release of Met during longer hypoxic periods. Therefore, stimulus duration modulates the interaction between opioids and NO in hypoxic pial artery dilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.