Abstract

Neuronal assemblies typically synchronise within the gamma oscillatory band (30-80 Hz) and are fundamental to information processing. Despite numerous investigations, the exact mechanisms and origins of gamma oscillations are yet to be known. Here, through multiunit recordings in the primary visual cortex of cats, we show that the strength of gamma power (20-40 and 60-80 Hz) is significantly stronger between the functionally connected units than between the unconnected units within an assembly. Furthermore, there is increased frequency coherence in the gamma band between the connected units than between the unconnected units. Finally, the higher gamma rhythms (60-80 Hz) are mostly linked to the fast-spiking neurons. These results led us to postulate that gamma oscillations are intrinsically generated between the connected units within cell assemblies (microcircuits) in relation to the stimulus within an emergent '50-ms temporal window of opportunity'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call