Abstract

When hearing thresholds are measured with high-frequency resolution there is a pseudo-periodic variation in thresholds across frequency of up to 15–20dB. This variation is called threshold fine structure (previously referred to as threshold microstructure). Consequently, estimates of auditory status based on threshold measures can depend greatly on the specific frequency evaluated. The impact of threshold fine structure on the prediction of auditory status was examined by measuring detection thresholds of pure tones (providing an indication of threshold fine structure) and comparing them with thresholds obtained using linear sweeps, sinusoidally frequency modulated tones, and narrow-band noise. Spontaneous otoacoustic emissions (SOAEs) were also obtained to confirm the established relationship between threshold fine structure and SOAEs. Thresholds obtained using linear sweeps and narrow-band noise provided stable threshold estimates indicating that such threshold estimates were less influenced by threshold fine structure. Consequently, thresholds obtained with these stimuli may provide estimates of cochlear status less dependent of the exact frequency being evaluated, permitting better prediction of performance on other psychoacoustic measures (such as cochlear tuning and loudness perception) and the properties of their more objective measures (such as otoacoustic emissions).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call