Abstract

ABSTRACT Introduction In recent years, to improve the precision of drug delivery and reduce toxicity associated from the uncontrolled drug release at off-target locations, extensive efforts have been paid to develop stimuli-responsive nanocarriers, which enable precise control over on-demand drug release due to internal stimuli like pH, redox, enzyme and external stimuli like light, magnetic field, and ultrasound. Moreover, some stimuli-responsive nanocarriers have been strategically incorporated with imaging probes for simultaneous monitoring of the drug delivery process and region of interest for treatment optimization. Areas covered In this review, the state-of-art progress in developing stimuli-responsive image-guided nanocarriers are summarized, including their designed strategies, synergistic mechanism, and biomedical applications in cancer therapy, and the current challenges and new perspectives are discussed. Expert opinion The stimuli-responsive nanocarriers provide assurance for precise release of drugs and imaging probes, and the molecular imaging techniques can monitor the pharmacokinetics, biodistribution and bioavailability of drugs in vivo, and feedback the drug delivery profile. Therefore, stimuli-responsive image-guided nanocarriers can integrate diagnosis and therapy in one nanoplatform and facilitate optimal therapeutic efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call