Abstract

In this paper, the development of a localized surface plasmon resonance (LSPR)-based optical enzyme biosensor using stimuli-responsive hydrogel–silver nanoparticles composite is described. This optical enzyme biosensor was constructed by immobilizing glucose oxidase (GOx) into the stimuli-responsive hydrogel. When a sample solution such as glucose was applied to the surface of this optical enzyme biosensor, the interparticle distances of the silver nanoparticles present in the stimuli-responsive hydrogel were increased, and thus the absorbance strength of the LSPR was decreased. Furthermore, hydrogen peroxide, which was produced by the enzymatic reaction, induced the degradation of highly clustered silver nanoparticles by the decomposition of hydrogen peroxide. Hence, a drastic LSPR absorbance change, which depends on the glucose concentrations, could be observed. On the basis of the abovementioned mechanism, the characterization of the LSPR-based optical enzyme biosensor was carried out. It was found that the LSPR-based optical enzyme biosensor could be used to specifically determine glucose concentrations. Furthermore, the detection limit of this biosensor was 10 pM. Therefore, this LSPR-based optical enzyme biosensor has the potential to be applied in cost-effective, highly simplified, and highly sensitive test kits for medical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call