Abstract

We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.