Abstract

Graphene oxide (GO) has attracted huge interest in the area of biomedical application due to its unique physicochemical properties, but the issue of long-term toxicity in the body remains unclear. Here, the rationally designed GO nanocarriers (ssPEG-PEI-GO) modified with polyethylene glycol (PEG) and branched polyethylenimine (BPEI) via disulfide linkage are described to control the biological activity of GO as a delivery carrier and its degradation in biological systems. The ssPEG-PEI-GO efficiently interacts with plasmid DNA (pDNA) to form a stable nanocomplex by electrostatic interaction. After cellular uptake, ssPEG-PEI-GO/pDNA complex can easily escape from endosomes by photothermal conversion of GO upon near-infrared irradiation and subsequent photothermally induced endosome disruption. After endosomal escape, reducing intracellular environment enables polymer dissociation and rapid gene release and therefore shows enhanced gene transfection efficiency with low toxicity in comparison with non-reducible amide-functionalized GO nanocarriers (amPEG-PEI-GO) and control BPEIs. Besides, dePEGylated GO nanocarrier, owing to its disulfide bond, exhibits higher entrapment by macrophages compared with amide-functionalized one and subsequently degrades in macrophage. The degradation process can be monitored by photoluminescence emitted from degraded GO. These results suggest new directions in the design of biodegradable and multifunctional GO-based nanocarrier for biomedical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.