Abstract
AbstractTemperature sensitive random linear and crosslinked copolymers of N‐tert‐butylacrylamide (NTBA) and acrylamide (Am) were synthesized by the solution polymerization method, using regulated dosing of comonomer Am having a higher reactivity ratio (rAm = 1.5) than NTBA (rNTBA = 0.5). Copolymers with varying feed ratios of NTBA and Am (80 : 20 to 20 : 80 mol %) were synthesized and characterized. For the synthesis of copolymer hydrogels, N′, N‐methylene bisacrylamide (MBA) (1.13 mol %) was used along with monomers. The effect of composition on transition properties was evaluated for the linear copolymers and their hydrogels. A definite trend was observed. The incorporation of a higher percentage of the hydrophilic comonomer Am in the structure resulted in the shifting of the transition temperature towards a higher value. The transition temperatures of the copolymers synthesized with feed compositions of 80 : 20, 70 : 30, 60 : 40, 50 : 50, 40 : 60, 30 : 70, and 20 : 80 mol % were found to be 2, 10, 19, 27, 37, 45, and 58°C, respectively. Differential scanning calorimetry (DSC) studies confirmed the formation of random copolymers. The copolymers synthesized with a monomer feed ratio of 50 : 50 with regulated dosing showed a single glass transition temperature (Tg) at 168°C, while the copolymer synthesized with full dosing of Am at the beginning of the reaction showed two Tgs, at 134 and 189°C. The copolymer samples were analyzed by Fourier transform infrared spectroscopy (FTIR) for ascertaining the composition. The composition of the copolymers followed the trend of the feed ratio, but the incorporation of NTBA in the copolymers was found to be lower than the feed ratio because of lower than quantitative yields of the reactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 672–680, 2005
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.