Abstract
Stimuli-responsive polymers, poly(acrylic acid) and poly(N-isopropylacrylamide), were covalently grafted onto the surface of graphene oxide through a facile redox polymerization initiated by cerium ammonium nitrate in aqueous solution at mild temperature. Thermogravimetric and element analyses show that the graft ratio of polymers increased with the increase of feeding amount of monomers. Atomic force microscopy reveals that the size and morphology of graphene oxide are well retained after the redox polymerization, with the exception of being covered by a homogeneous layer of polymer. The covalently grafted poly(acrylic acid) and poly(N-isopropylacrylamide) afforded pH and thermal responsibility to graphene oxide, and the assemble–disassemble behaviors of polymer-grafted graphene oxide in aqueous solution could be controlled by varying the pH or temperature of the solution, which provided a favorable strategy to handle the aqueous solution of graphene oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.