Abstract
Depression is one of the most common mental diseases, which seriously affects patients' physical and mental health. Emerging evidence has indicated that oxidative stress (OS) is a major cause of neurodegeneration involved in the pathogenesis of depression. Consequently, targeted reactive oxygen species (ROS) elimination is regarded as a promising strategy for efficient depression therapy. In addition, insufficient brain drug delivery is the main obstacle to depression therapy owing to the presence of the blood-brain barrier (BBB). To achieve the goals of bypassing the BBB and promoting antioxidant therapy for depression, a broad-spectrum ROS scavenging NPs was rationally designed through a nasal-brain pathway developed for combined ROS scavenging and brain drug delivery. A hexa-arginine (R6) modified ROS-responsive dextran (DEX) derivate was synthesized for antidepressant olanzapine (Olz) and H2 donor amino borane (AB) loading to prepare Olz/RDPA nanoparticles (NPs). Subsequently, the NPs were dispersed into a thermoresponsive hydrogel system based on poloxamer. In vitro and in vivo results demonstrated that Olz/RDPA in situ thermoresponsive hydrogel system could effectively deliver NPs to the brain via the nasal-brain pathway and alleviate depression-like behaviors through combined ROS depletion and inhibition of 5-HT dysfunction of the oxidative stress-induced. The proposed ROS-scavenging nanotherapeutic would open a new window for depression treatment. STATEMENT OF SIGNIFICANCE: ROS is an innovative therapeutic target involving the pathology of depression whereas targeted delivery of ROS scavenging has not been achieved yet. In the current study, ROS-responsive nanoparticles (Olz/RDPA NPs) were prepared and dispersed in a thermosensitive hydrogel for delivery through the nasal-brain pathway for the treatment of depression. Sufficient ROS depletion and improvement of delivery capacity by the nasal-brain pathway effectively could reverse oxidative stress and alleviate depressive-like behavior. Collectively, these nanoparticles may represent a promising strategy for the treatment of depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.