Abstract

Artificial wrinkles, especially those with responsive erasure/regeneration behaviors have gained extensive interest due to their potential in smart applications. However, current wrinkle modulation methods primarily rely on network rearrangement, causing bottlenecks in in situ wrinkle regeneration. Herein, we report a dually cross-linked network wherein [2]rotaxane cross-link can dissipate stress within the wrinkles through its sliding motion without disrupting the network, and quadruple H-bonding cross-link comparatively highlight the advantages of [2]rotaxane modulation. Acid stimulation dissociates quadruple H-bonding and destructs network, swiftly eliminating the wrinkles. However, the regeneration process necessitates network rearrangement, making in situ recovery unfeasible. By contrast, alkaline stimulation disrupts host–guest recognition, and subsequent intramolecular motion of [2]rotaxane dissipate energy to eliminate wrinkles gradually. The always intact network allows for the in situ recovery of surface microstructures. The responsive behaviors of quadruple H-bonding and mechanical bond are orthogonal, and their combination leads to wrinkles with multiple but accurate responsiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.