Abstract

Stimuli-responsive crystals capable of energy conversion have emerged as promising materials for smart sensors, actuators, wearable devices, and robotics. Here, a novel ferrocene-based organic molecule crystal (Fc-Cz) that possesses anisotropic piezoelectric, optical, and mechanical properties is reported. It is demonstrated that the new crystal Fc-Cz can be used as an ultrasensitive piezoelectric material in fabricating strain sensors. The flexible sensor made of crystal Fc-Cz can detect small strains/deformations and motions with a fast response speed. Analysis based on density functional theory (DFT) indicates that an external pressure can affect the dipole moment by changing the molecular configuration of the asymmetric single crystal Fc-Cz in the crystalline state, leading to a change of polarity, and thereby an enhanced dielectric constant. This work demonstrates a new artificial organic small molecule for high-performance tactile sensors, indicating its great potential for developing low-cost flexible wearable sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.