Abstract

Polymerization reactions triggered by stimuli play a pivotal role in materials science, with applications ranging from lithography to biomedicine to adaptive materials. However, the development of chemically triggered, stimuli-responsive systems that can confer spatial and temporal control on polymerization remains a challenge. Herein, chemical-stimuli-induced polymerization based on a liquid crystal (LC) printhead is presented. The LC responds to a local chemical stimulus at its aqueous interface, resulting in the ejection of initiator into the solution to trigger polymerization. Various LC printhead geometries are designed, allowing programming of: i) bulk solution polymerization, ii) synthesis of a thin surface-confined polymeric coating, iii) polymerization-induced self-assembly of block copolymers to form various nanostructures (sphere, worm-like, and vesicles), and iv) 3D polymeric structures printed according to local solution conditions. The approach is demonstrated using amphiphiles, multivalent ions, and biomolecules as stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call