Abstract

Difluoroboron β-diketonate (BF2bdk) compounds exhibit solid-state switchable luminescence under excitation by UV light. This property is usually manifested as a blue-shift in emission when dye films are thermally annealed followed by a red-shift in response to mechanical shear (i.e. mechanochromic luminescence). Here we report thiophene and furan heterocycle-substituted dyes bearing short methoxy and long dodecyloxy chain substituents. Optical properties of the dyes were investigated in solution, pristine powders, and films on paper and glass. The structural and thermal properties of the dyes were also investigated by powder x-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The methoxy-substituted dyes exhibited neither thermal nor mechano-responsive behavior, however, addition of a longer C12 alkoxyl chain substituent resulted in stimuli-responsive behavior. The furan and thiophene dodecyloxy-substituted dyes both exhibit high-contrast reversible luminescence switching between crystalline, blue-shifted and amorphous red-shifted emissive states. For the furan dye, gentle heating produced a green emissive form while melting followed by rapid cooling produced an orange emissive form. The thiophene dye, on the other hand, exhibited blue-shifted emission when annealed below its melting temperature and red-shifted emission when smeared with a cotton swab (mechanochromic luminescence). These transformations for both dyes were found to be completely reversible, making them potential candidates for applications requiring reusable, functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.