Abstract

Different from the conventional irreversible covalent conjugations, a simple and efficient dynamic Schiff base covalent assembly is developed to construct the stable and smart dipeptide-protein hydrogels under mild conditions. Diphenylalanine-hemoglobin hydrogel is chosen to investigate the gelation formation process and mechanism. It is found that such assembled dipeptide-protein hydrogels are sensitive to pH variation, and simultaneously the proteins can be released without changing the native secondary structures from the gels. Furthermore, these adaptive hydrogels can encapsulate a series of small molecules, multicomponent proteins, and functional nanoparticles. These versatile hydrogels may find a great potential in bioapplications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call