Abstract

This paper reports a stimuli-responsive designer supramolecular polymer gel in dimethylsulphoxide (DMSO)/water (1:2) based on a dipeptide amphiphile and β-cyclodextrin (β-CD) The dipeptide amphiphile contains caproic acid at the N terminus and methyl ester at the C terminus. From X-ray single crystal diffraction, the amphiphile adopts a kink-like conformation. The amphiphile self-assembled to form a parallel sheet-like structure stabilized by multiple intermolecular hydrogen bonds. Moreover, the parallel sheet-like structure is also stabilized by edge-to-edge π–π stacking interactions. In higher-order packing, it forms a corrugated sheet-like structure stabilized by hydrophobic interactions. The dipeptide amphiphile interacts with β-cyclodextrin and forms gel through supramolecular polymer formation in (DMSO)/water (1:2) by a simple heating-cooling cycle. The sol-to-gel transformation is because of a host–guest complex between compound 1 and β-CD and the formation of supramolecular polymer accompanied by microstructure changes from nanofibers to microrods. The gel is temperature responsive with a Tgel of 70 °C. The supramolecular polymer gel is also responsive to stimuli such aspicric acid and HCl. The extensive spectroscopic studies show that the aromatic hydrophobic side chain of compound 1 forms a host–guest complex with β-CD. These results will be helpful for the design of advanced programable eco-friendly functional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.