Abstract

At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.