Abstract

While inflammatory cytokines are well-recognized critical factors for the induction of cyclooxygenase-2 (COX-2) in activated fibroblast-like synovial cells, the roles of biologically active components other than inflammatory cytokines in synovial fluid remain unknown. Herein, we assessed the role of lysophosphatidic acid (LPA), a pleiotropic lipid mediator, in COX-2 induction using synovial fluid of patients with rheumatoid arthritis (RA) in fibroblast-like RA synovial cells. Synovial fluid from RA patients stimulated COX-2 induction, which was associated with prostaglandin E(2) production, in RA synovial cells. The synovial fluid-induced actions were inhibited by G(i/o) protein inhibitor pertussis toxin and LPA receptor antagonist 3-(4-[4-([1-(2-chlorophenyl)ethoxy]carbonyl amino)-3-methyl-5-isoxazolyl] benzylsulfanyl) propanoic acid (Ki16425). In fact, LPA alone significantly induced COX-2 expression and enhanced IL-1alpha- or IL-1beta-induced enzyme expression in a manner sensitive to pertussis toxin and Ki16425. RA synovial cells abundantly expressed LPA(1) receptor compared with other LPA receptor subtypes. Moreover, synovial fluid contains a significant amount of LPA, an LPA-synthesizing enzyme autotaxin, and its substrate lysophosphatidylcholine. In conclusion, LPA existing in synovial fluid plays a critical role in COX-2 induction in collaboration with inflammatory cytokines in RA synovial cells. Ki16425-sensitive LPA receptors may be therapeutic targets for RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.