Abstract

Propylthiouracil (PTU) is a common and effective clinical medicine for the treatment of hyperthyroidism. Our previous study demonstrated that short-term treatment with PTU inhibits progesterone production in rat granulosa cells. However, our present results indicate that a 16-h treatment with PTU was able to stimulate pregnenolone production in rat granulosa cells, although progesterone production was diminished by PTU through inhibition of 3β-hydroxysteroid dehydrogenase. Notably, we found that PTU treatment enhanced the conversion of cholesterol into pregnenolone, whereas the protein level of the cytochrome P450 side-chain cleavage enzyme (P450scc, which is the enzyme responding to this conversion) was not affected. Interestingly, the levels of steroidogenic acute regulatory protein (StAR) in both total cell lysate and the mitochondrial fraction were significantly increased by PTU treatment. Furthermore, the binding of steroidogenic factor-1 (SF-1) to the StAR promoter region was also enhanced by PTU treatment, which suggests that PTU could upregulate StAR gene expression. In addition to SF-1 regulation, we found that mitogen-activated protein (MAP) kinase kinase activation is an important regulator of PTU-stimulated StAR protein expression, based on the effects of the MEK inhibitor PD98059. In conclusion, these results indicate that PTU plays opposite roles in the production of progesterone and its precursor, pregnenolone. The regulation of negative feedback on speeding the cholesterol transportation and pregnenolone conversion after a 16-h PTU treatment may be the mechanism explaining PTU's inhibition of progesterone production in rat granulosa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.