Abstract

We evaluated the temporal (24, 48 and 72 hours) and dose-dependent (5, 10, and 100 ng/mL of LH, IGF-1, and EGF, respectively) production and secretion of progesterone (P4) in cultured luteal cells from different stages of estrous cycle as well as the expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), and 3β-hydroxysteroid dehydrogenase (HSD3B), anti-apoptotic gene PCNA, and pro-apoptotic gene BAX in luteal cells of mid-luteal phase in buffalo. Samples from early luteal phase (ELP; Day 1 to 4; n = 4), mid-luteal phase (MLP; Day 5 to 10; n = 4), and late luteal phase (LLP; Day 11 to 16; n = 4) of estrous cycle were collected. Progesterone was assayed by RIA, whereas mRNA expression was determined by quantitative real-time polymerase chain reaction. Results depicted that highest dose (100 ng/mL) of LH, IGF-1, and EGF and longer duration of time brought about a (P < 0.05) rise in P4 level and expression of steroidogenic enzymes and PCNA compared with the lower level(s) and control while, all treatments (P < 0.05) inhibited BAX expression in a time dependent-manner. Analysis of interaction between stage and treatments revealed that LH treatment (P < 0.05) increased P4 production compared with IGF-1 and EGF in ELP and MLP. However in LLP, treatment with IGF-1 and EGF significantly (P < 0.05) increased P4 production compared with LH treatment. Summarizing, our study explores the steroidogenic potential of LH and growth factors across different luteal stages in buffalo, which on promoting steroidogenic enzyme expression and cell viability culminated in enhanced P4 production in luteal cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.