Abstract
Protein kinase C (PKC) comprises at least twelve isoforms and has an isoform-specific action on cardiac electrical activity. The slow component of delayed rectifier K(+) current (I (Ks)) is one of the major repolarizing currents in the hearts of many species and is also potentiated by PKC activation. Little is known, however, about PKC isoform(s) functionally involved in the potentiation of I (Ks) in native cardiac myocytes. I (Ks) was recorded from guinea-pig atrial myocytes, using the whole-cell configuration of patch-clamp method. Bath application of phenylephrine enhanced I (Ks) concentration-dependently with EC(50) of 5.4 microM and the maximal response (97.1+/-11.9% increase, n=16) was obtained at 30 microM. Prazosin (1 microM) almost totally abolished the potentiation of I (Ks) by phenylephrine, supporting the involvement of alpha(1)-adrenoceptors. The stimulatory action of phenylephrine was significantly, if not entirely, inhibited by the general PKC inhibitor bisindolylmaleimide I but was little affected by Gö-6976, Gö-6983 and rottlerin. Furthermore, this stimulatory effect was significantly reduced by dialyzing atrial myocytes with PKCepsilon-selective inhibitory peptide epsilonV1-2 but was not significantly affected by conventional PKC isoform-selective inhibitory peptide betaC2-4. Phorbol 12-myristate 13-acetate (PMA) at 100 nM substantially increased I (Ks) by 64.2+/-1.3% (n=6), which was also significantly attenuated by an internal dialysis with epsilonV1-2 but not with betaC2-4. The present study provides experimental evidence to suggest that, in native guinea-pig cardiac myocytes, activation of PKC contributes to alpha(1)-adrenoceptor-mediated potentiation of I (Ks) and that epsilon is the isoform predominantly involved in this PKC action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.