Abstract

Previous studies have shown that elevations in intraoocytic cAMP prevent mammalian oocytes from maturing, whereas cAMP degradation allows these oocytes to begin maturation, as evidenced by the onset of oocyte nuclear disassembly (="germinal vesicle breakdown", GVBD). Moreover, such cAMP degradation not only reduces cAMP levels but also generates AMP, which in turn can stimulate AMP-activated kinase (AMPK), a well-documented inducer of GVBD in mice. Alternatively, in some marine invertebrates, intraoocytic cAMP triggers, rather than blocks, GVBD, and whether AMPK up- or downregulates maturation in these species has not been tested. Thus, AMPK was monitored in the nemertean worm Cerebratulus during GVBD stimulated by seawater (SW) or cAMP elevators. In oocytes lacking surrounding follicle cells, AMPK activity was initially elevated in immature oocytes but subsequently reduced during SW- or cAMP-induced GVBD, given that the catalytic alpha-subunit of AMPK in maturing oocytes displayed a decreased stimulatory phosphorylation at T172 and an increased inhibitory phosphorylation at S485/491. Accordingly, AMPK-mediated phosphorylation of acetyl-CoA carboxylase, a known target of active AMPK, also declined during maturation. Moreover, treatments with either ice-cold calcium-free seawater (CaFSW) or AMPK agonists dissolved in SW maintained AMPK activity and inhibited GVBD. Conversely, adding cAMP elevators to CaFSW- or SW-solutions of AMPK activators restored GVBD while promoting S485/491 phosphorylation and AMPK deactivation. Collectively, such findings not only demonstrate for the first time that intraoocytic AMPK can block GVBD in the absence of surrounding follicle cells, but these results also provide evidence for a novel GVBD-regulating mechanism involving AMPK deactivation by cAMP-mediated S485/491 phosphorylation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call