Abstract

p-Fluoronitrobenzene (p-FNB) is a toxic compound and tends to accumulate in the environment. p-FNB can be effectively removed and defluorinated in a single-chamber bioelectrochemical system (BES). To verify the suppositionally integrated reductive and oxidative metabolism mechanism in the BES, an oxygen-limited environment was used, with pure oxygen and nitrogen environments used as two controls. Under the oxygen-limited condition, the most excellent performance was achieved. The defluorination rate and mineralization efficiency were 0.0132h−1 and 72.99±5.68% after 96h, with 75.4% of fluorine in the form of the fluoride ion. This resulted from the unique environment that allowed conventionally integrated reductive and oxidative catabolism. Moreover, the oxidation–reduction potential (ORP) had a significant effect on microbial communities, which was also an important reason for performance diversity. These results provide a new method for complete p-FNB treatment and a control strategy by ORP regulation for optimal system performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.