Abstract

Long-term plasticity plays an important role in the functional construction of neuronal networks. While anatomical wiring provides essential hardware for brain function, activity-dependent plasticity works as an adjustable software interface allowing sensory induced modification of transmission efficacy at given synaptic connections. In contrast to the vast majority of excitatory synapses, at distinct types of inhibitory GABAergic connections, the link between the pattern of activity and the subsequent change of synaptic strength has not been well characterized. Here, we examined frequency and stimulation pattern dependence in long-term synaptic depression at CCK+/CB1R inhibitory perisomatic synapses in the hippocampal CA1 region, and we found that successful LTD induction depends on the pattern of stimulation rather than the number of stimuli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.