Abstract

Proteins EI(Ntr), NPr and IIA(Ntr) form a phosphoryl group transfer chain (Ntr-PTS) working in parallel to the phosphoenolpyruvate:carbohydrate phosphotransferase system (transport-PTS) in Escherichia coli. Recently, it was shown that dephosphorylated IIA(Ntr) binds and inhibits TrkA, a low-affinity potassium transporter. Here we report that the Ntr-PTS also regulates expression of the high-affinity K+ transporter KdpFABC, which rescues K+ uptake at limiting K+ concentrations. Transcription initiation at the kdpFABC promoter is positively controlled by the two-component system KdpD/KdpE in response to K+ availability. We found that kdp promoter activity is stimulated by the dephosphorylated form of IIA(Ntr). Two-hybrid data and biochemical analysis revealed that IIA(Ntr) interacts with sensor kinase KdpD and stimulates kinase activity, resulting in increased levels of phosphorylated response regulator KdpE. The data suggest that exclusively dephosphorylated IIA(Ntr) binds and activates KdpD. As there is cross-talk between the Ntr-PTS and the transport-PTS, carbon source utilization affects kdpFABC expression. Expression is enhanced, when cells utilize preferred carbohydrates like glucose, which results in preferential dephosphorylation of the transport-PTS and also of IIA(Ntr). Taken together, the data show that the Ntr-PTS has an important role in maintaining K+ homeostasis and links K+ uptake to carbohydrate metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.