Abstract

Substantial neurophysiological evidence points to the posterior parietal cortex (PPC) as playing a key role in the coordinate transformation necessary for visually guided reaching. Our goal was to examine the role of PPC in the context of learning new dynamics of arm movements. We assessed this possibility by stimulating PPC with transcranial magnetic stimulation (TMS) while subjects learned to make reaching movements with their right hand in a velocity-dependent force field. We reasoned that, if PPC is necessary to adjust the trajectory of the arm as it interacts with a novel mechanical system, interfering with the functioning of PPC would impair adaptation. Single pulses of TMS were applied over the left PPC 40 msec after the onset of movement during adaptation. As a control, another group of subjects was stimulated over the visual cortex. During early stages of learning, the magnitude of the error (measured as the deviation of the hand paths) was similar across groups. By the end of the learning period, however, error magnitudes decreased to baseline levels for controls but remained significantly larger for the group stimulated over PPC. Our findings are consistent with a role of PPC in the adjustment of motor commands necessary for adapting to a novel mechanical environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call